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Abstract. The question of what information about a quantum state may be inferred from a
sequence of measurements made on it, is addressed. The main result is that maximum-likelihood
estimation gives an arguably natural optimum approach in quantum theory. It singles out a particular
choice of basis, in which the state is expressed. Various incompatible and incomplete observations
made on the ensemble are treated as a complete generalized measurement. Consequently, the
maximum likelihood (relative entropy) is the best measure for relating experimental data with
theoretical predictions of quantum theory.

Quantum theory describes events on the most fundamental level currently available. The
synthesis of information from mutually incompatible quantum measurements plays a key
role in testing the structure of the theory. The purpose of this paper is to show the unique
relationship between quantum theory and the mathematical statistics used to obtain optimal
information from incompatible observations. Quantum theory prefers the relative entropy
(maximum-likelihood principle) as the proper measure for evaluation of the distance between
measured data and probabilities defined by quantum theory. For an experimentalist working
in quantum physics it means that data should be fitted to the theory preferably using the
maximum-likelihood estimation.

For the sake of simplicity and brevity we assume a discrete spectrum of the observed
variable. This corresponds to the case of sharp and precise quantum measurements. Note,
however, that these ideal assumptions are not detrimental. The more realistic case of
observables with a continuous spectrum and finite experimental precision can be incorporated
into this framework by replacing the corresponding projectors by a probability-valued operator
measure (POVM) [1, 2]. Our main result is independent of a particular implementation of the
quantum measurement and works in the very general case as well. In the following, we shall
use the Dirac notation.

Let us start the exposition by considering repeated precise detection. This case is treated
in standard textbooks of quantum theory [3]. Any observation is represented by a Hermitian
operator Â, whose spectrum determines the possible results of the measurement

Â|a〉 = a|a〉. (1)

Eigenstates are orthogonal 〈a|a′〉 = δaa′ and the corresponding projectors provide the
completeness relation∑

a

|a〉〈a| = 1̂. (2)
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Projectors predict the probability for detecting a particular value of the q-variable a represented
by the operator Â as pa = 〈a|ρ|a〉, provided that the system has been prepared in a quantum
state ρ. This mathematical picture corresponds to the experimental reality in the following
sense: when the measurement represented by the operator Â is repeated N times on identical
copies of the system, a particular output a is collected Na times. The relative frequencies
fa = Na

N
will sample the true probability as fa → pa fluctuating around them. The exact

values are reproduced only in the asymptotic limitN → ∞. The experimentalist’s knowledge
may be expressed in the form of a diagonal density matrix

ρ̂est =
∑
a

fa|a〉〈a| (3)

provided that error bars of the order of 1/
√
N are associated with the sampled relative

frequencies. This should be understood as a mere rewriting of the experimental data {N,Na}.
Similar knowledge may be obtained by observations, which can be parametrized by operators
diagonal in the |a〉 basis, i.e. by operators commuting with the operator Â. However, the
possible measurement of non-commuting operators yields new information, which cannot be
derived from the measurement of Â.

More may be learned about the unknown state of the system provided that observables
corresponding to non-commuting operators will be registered on several copies of the same
state. Let us assume that operators Âj , j = 1, 2, . . . will be measured by probing the system
N times together. Now, one expects to gain more than just the knowledge of the diagonal
elements of the density matrix in some a priori given basis. This sequential measurement of
non-commuting observables should be distinguished from the similar problem of approximate
simultaneous measurement of non-commuting observables†. As in the former case of a single
Hermitian operator, the latter case of various non-commuting operators may be represented by
a series of projectors |yi〉〈yi |.This should be accompanied by relative frequencies fi indicating
how many times a particular output i has been registered,

∑
i fi = 1. Various states need not

be orthogonal 〈yi |yj 〉 �= δij , in contrast to the previous case of a single Hermitian operator.
However, this substantial difference has deep consequences. The result of the measurement
cannot be meaningfully represented in the same manner as previously. For example, direct
linking of probabilities with relative frequencies used in standard reconstructions [4, 5]
ρii = fi, ρii = 〈yi |ρ̂|yi〉, may appear as inconsistent, since the system of linear equations is
overdetermined, in general.

Let us assume the existence of a quantum measure F(ρii |fi), which parametrizes the
distance between measured data and probabilities predicted by quantum theory. We will
search for the state(s) located in the closest neighbourhood of the data. A general state may
be parametrized in its diagonal basis as

ρ̂ =
∑
i

ri |ϕi〉〈ϕi |. (4)

The equation for the extremal states may be found analogously to the treatment developed in
[6]. In particular, the formal necessary condition for extremal solution reads

δF (ρii |fi)
δρ̂

= 0. (5)

† The approximate simultaneous measurement of non-commuting operators [ÂB̂] �= 0 can always be represented by
measurement of commuting operators Â, B̂ defined on the extended Hilbert space H = Hs ⊗Ha, where Hs and Ha
are the space of the original system and the space of the auxiliary field (ancilla), respectively.
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Since the density matrix is parametrized according to the relation (4) with the help of
independent (orthogonal) states |ϕk〉, the variation may be done along these rays yielding
the system of coupled equations

δF (ρii |fi)
δ〈ϕk| = 0

for any allowed k. Using the relation

δF (ρii |fi)
δ〈ϕk| =

∑
i

∂F (ρii |fi)
∂ρii

|yi〉〈yi |ϕk〉rk

the system of equations may be rewritten as the equation for the density matrix
∑
i

∂F

∂ρii
|yi〉〈yi |ρ̂ = λρ̂ (6)

where λ is a Lagrange multiplier. The normalization condition Tr ρ̂ = 1 sets its value to

λ =
∑
i

∂F

∂ρii
ρii .

Any composed functionG(F(ρii |fi)) fulfils the same extremal equation (6) with the Lagrange
multiplier rescaled as λ dG

dF . Without loss of generality it is therefore enough to consider the
normalization condition λ = 1.

The extremal equation (6) has the form of a decomposition of the identity operator on the
subspace, where the density matrix is defined by

∑
i

∂F

∂ρii
|yi〉〈yi | = 1̂ρ. (7)

This resembles the definition of POVM characterizing a generalized measurement [1, 2]. To
link the above extremalization with quantum theory, let us postulate the natural condition for
the quantum expectation value

T r

(
∂F

∂ρii
|yi〉〈yi |ρ̂

)
= fi. (8)

This assumption is reasonable: the sequential incompatible observations with results fi are
regarded as a new measurement scheme, namely the measurement of the quantum state. The
relation (8) interprets the detected data as quantum expectation values.

The quantum measure F then fulfils the differential equation

∂F

∂ρii
ρii = fi (9)

and singles out the solution in the form

F(ρii |fi) =
∑
i

fi ln ρii . (10)

This is nothing other than the log likelihood or Kullback–Leibler relative information†. Formal
requirements of quantum theory, namely the interpretation of the extremal equation as a POVM,
result in the concept of maximum likelihood in mathematical statistics. The analogy between

† Notice the asymmetry between the arguments f and p in definition of Kullback–Leibler relative information
K(f/p) = ∑

i fi ln(fi/pi). In the paper of Frieden [7] is the term Kullback–Leibler norm used for opposite ordering
of data and probabilities. The case discussed here is called generalized Burg principle.
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the standard quantum measurement associated with a single Hermitian operator, and a series
of sequential measurements associated with many non-commuting operators is apparent now.
The former determines the diagonal elements in the basis of orthonormal eigenvectors, whereas
the latter estimates not only the diagonal elements, but the diagonalizing basis itself. This is
the difference between the measurement of the quantum observable Â and the measurement of
the quantum state. In this sense maximum-likelihood estimation may be considered as a new
quantum measurement. The observed quantum state is given by the solution of the nonlinear
operator equation

R̂(ρ)ρ̂ = ρ̂

R̂(ρ) =
∑
i

fi

ρii
|yi〉〈yi |. (11)

This is the completeness relation of a POVM with measured outputs {fi}. The equation of this
type resembles the so-called expectation–maximization (EM) algorithm [8] in mathematical
statistics. The solution can be find using such an iterative method provided that basis is
transformed in each step by a suitably chosen unitary transformation [9]. Maximum likelihood
has recently been used for the solution of several problems in quantum theory [10]. Special
cases of the solution (11) have been discussed for the operational phase concepts [11], the
diagonal elements of the density matrix [12] and the reconstruction of the spin- 1

2 state [13]. A
numerical technique for maximum-likelihood estimation has been used in [14].

The quantum interpretation offers a new viewpoint on maximum-likelihood estimation.
This method is customarily considered as just one of many estimation methods, unfortunately
it is one of the most complicated ones. It is often considered as a subjective method,
since likelihood quantifies the degree of belief in a certain hypothesis. Any physicist, an
experimentalist above all, would perhaps use as their first choice the least-squares method for
fitting theory and data [5]. Let us evaluate this as an illustrative counterexample. In this case
F(ρii |fi) = ∑

i (ρii − fi)
2 and the extremal equation reads

2
∑
i

(ρii − fi)|yi〉〈yi |ρ̂ = λρ̂

λ = 2
∑
i

(ρii − fi)ρii .
(12)

Equation (12) may again be interpreted as a completeness relation for the POVM

Êi = 2
(ρii − fi)

λ
|yi〉〈yi |.

However, the expectation value is given by a rather complicated implicit function of the
measured data, since

Tr(ρ̂Êi) = 2
(ρii − fi)ρii

λ
. (13)

This does not mean that the least-squares method is incorrect, it only means that such a
fitting does not reveal the structure of the quantum measurement. In this sense the maximum
likelihood method is unique and exceptional.

There are several fundamental consequences of this result. According to Fisher’s
theorem [15], maximum-likelihood estimation is unbiased and achieves the Cramér–Rao
bound asymptotically for large N → ∞. As demonstrated here, for any finite N maximum
likelihood may be interpreted as a quantum measurement. When seen this way, bias and the
noise above the Cramér–Rao bound seem to be unpleasant but natural properties of quantum
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systems. Maximum likelihood may set new bounds on distinguishability currently related to the
Fisher information [16]. Fisher information corresponds to the Riemannian distinguishability
metrics and may be naturally interpreted as the distance in the Hilbert space. Besides this,
fundamental equations of quantum theory such as the Schrödinger equation, Klein–Gordon
equation, Pauli equation, etc and other physical laws may be derived from the principle of
minimum Fisher information [17, 18]. This again stresses the role of information in the
formulation of fundamental laws of Nature.

Maximum likelihood generalizes the notion of POVM in the following sense. Actual
measurements may be (and usually always are) incomplete. The maximum-likelihood
approach shows how to complete them. Indeed, the extremal equation (11) represents the
completeness relation. Therefore, any incomplete measurements (represented here by |yi〉〈yi |)
are complete in the subspace, where the completeness relation R̂ = 1 holds. POVM
and estimated quantum state are mutually connected in their dependence on the type of
observations and on their results. In particular, it is not necessary to consider only the special
scheme for quantum state observation such as, for example, the mutually complementary
eigenbases [19].

Note also that the formulation given here is free of any assumptions concerning the cost
function and prior information [1, 2], since the conditions for estimation are different. In
standard formulations the question is: ‘What measurement is optimal for the given state and
the given resolution measure (cost function)?’ The decision rule than depends on both the
prior distribution and the cost function. The amount of Shannon information acquired by a
quantum measurement has been addressed by Massar and Popescu in [20]. It is a remarkable
fact that there exists a model-independent answer to the question, how much can be learned
(in bits) about a quantum state. In the formulation considered in this contribution the question
was: ‘What (mixed) state fits the given data obtained by the given measurement in the optimal
way?’ No prior information about the quantum state has been used, since in our opinion, such
knowledge is not consistent with a quantum formulation. Any a priori information about a
quantum state must come from another quantum measurement.
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